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Abstract 

Exterior and interior solutions of Einstein's equations are given for fluid moving with 
the speed of light and having a superposed spin. The spin is microscopic and does not 
refer to the rotation of world lines, which are straight. A strange feature is that the 
exterior solution is in every case locally isometric to an exterior solution for a non- 
spinning null fluid. 

1. Introduction 

In previous papers (Bonnor, 1969, 1970) I have described solutions of  
Einstein's equations in which the sources move in a straight line with the 
speed of light, c. In one case the source is a null fluid, and in the second 
a charged null fluid. In this paper I shall give solutions in which the source 
is a spinning null fluid. Particles made out of  these three continua will 
be called a nullicon, a charged nullieon and a spinning nullieon, respectively. 

The field equations used are 

R,k -- �89 R = -8~r ,k  (1.1) 

and the solutions are global ones, consisting of an exterior part  for which 
T~k = 0, and an interior part  for which T~k # 0, appropriate conditions being 
satisfied at the boundary between the two regions. 

In Section 2 I present the metric and its field equations, and in Section 
3 I obtain the exterior solutions. I show in Section 4 how these can be 
extended to give globally regular solutions. The physical interpretation 
follows in Section 5, and here the justification for referring to spinning null 
fluid is given. An exact solution for a pulse of  spinning nulI fluid is given 
in Section 6, and the superposition property of  the solutions is referred 
to in Section 7. 

2. The Metric and its FieM Equations 

A sufficiently general metric is 

ds 2 = - d x  2 - ay 2 + du(2~ dx + 2p dy + 2 dv + 2A du) 
257 

(2.1) 
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where a(x,y, u), fi(x,y, u) and A(x,y, u) are functions of  class C 1, piecewise 
C 3, and -0o < x,y,u,v < ~.  It  will be assumed th roughout  that  all other 
functions introduced have sufficient differenfiability to fulfil these require- 
ments on a, fl and A. Metrics o f  this type have been studied previously 
(Geroch,  1966; W y m a n  & Trollope, 1965). The coordinates will be num-  
bered 

X 1 ~ X, X 2 -- y, X 3 ~ 13, X 4 --= U (2.2) 

SO that  x I and x 2 are space-like, and x 3 null and x 4 are time-like. The metric 
has in general one Killing vector (Ehlers and Kundt ,  1962) 

s '  = ~/(2) 33 ~ (2.3) 

which is null and normal  to the null coordinate hypersurfaces 

x 4 = u = const. 

The metric (2.1) has [g,k[ = - I  and 

(2.4) 

leaves the form of  the metric (2.1) unaltered but  takes c~, 3 and A into 

~* = ~ + /z , ,  /3* = fl +/x2, A* = A +/~4 (2.7) 

where/& -- Ou/Ox z. Hence, if/z is chosen to satisfy 

/3"11 -}- /3"22 = - - ( " 1  -~ 52 )  ( 2 . 8 )  
we have 

cq* + flz* = 0 (2.9) 

Hence, without  loss of  generality we may take 

Let us define w by 

- 1 + f l 2 = 0  (2.10) 

in (2.1), and this will be done henceforth. 
It  follows f rom (2.10) that there exists a function 4, such that 

a4, a4, =~yy, 3= -Ox (2.11) 

w ~ 2 - 3 1  V2 - 02 4' a24' = = 4, = 0-~- 4 ay2 (2.12) 

gik = - 1  fl (2.5) 
/3 _(~2 + 32 + 2A) 
0 1 

The transformation 
v = v* + IX(x,y,u) (2.6) 
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The only non-zero components  of  the covar iant  Ricci tensor  are 

R14 = R41 = ---~w 2 (2.13) 

R24 = R42 = �89 1 (2.14) 

R44 = - V  2 A - -}w 2 (2.15) 

(2.10) and (2.12) having been used. Not ice  that  the scalar curvature  R 
vanishes;  hence the fieM equations (1.1) may be written 

W 2 = +167rT14 = +167rT41 (2.16) 

wl = --167rT24 = -167rT42 (2.17) 

V 2 A -}- lw2  = -}-87TT44 (2.18) 

3. Empty Space Solutions 

In empty  space T~k vanishes, so f rom (2.16)-(2.18) we have 

V 2 A + lw2 = O, W = h(u) (3.1) 

h being arbitrary.  Equat ions (2.11) and (2.12) then imply that  e and/or /3  
will contain terms linear in x and/or  y. This I shall exclude because I shall 
confine this work  to fields with sources in only the finite par t  o f  every 
2-surface u = const.,  v = const. Hence in empty space let us take 

V 2 A = 0, w = V 2 ~b = 0 (3.2) 

F r o m  (2.11) and (3.2) it follows that  e and 13 are conjugate ha rmonic  
functions;  in part icular  

~2 =/31 (3.3) 

so there exists a ha rmonic  function q~(x,y,u) such that  

- 0 x '  /3 = ~y  (3.4) 

Because of  this the terms ~dx +/3@ in (2.1) fo rm at  fixed u a perfect 
differential, and by using a t ransformat ion  of  fo rm (2.6) with/~ = - ~  (2.1) 
can be reduced to the plane-fronted wave metric of  fo rm 

d s 2 = - d x 2 - d y 2  + 2dudv* + 2 ( A - ~ u ) d U Z  (3.5) 

where 

is ha rmonic  in x and y. However ,  it m a y  not  be possible to retain Euclidean 
topology  for  the 2-surfaces u = const.,  v = const., and keep 

cont inuous (see Section 6). 
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To sum up, we obtain a solution fo r  empty space i f  the functions o~, [3 and 
A in (2.1) are such that (2.11) and (3.2) are satisfied. Although in empty 
space ~ and [3 can be removed by a coordinate transformation, I prefer 
not to do this, for reasons which will become clear in Section 6. 

4. Global Solutions 

To generate an exterior solution, ~b and A must satisfy (3.2). Except in 
the uninteresting case in which they are functions of u only, ~b and A cannot 
be bounded for all x and y. Let us take the case in which the singularities 
in ~b and A all lie inside a region D bounded by a cylinder 27 such that 

Z:  x 2 + y2 = f12 (const. > 0) (4.1) 

Inside 27, replace ~b by some class C 4 function ~b*(x,y,u) and A by some 
C 3 function A*(x ,y ,  u) such that on Z' itself 

0.4 OA* 
A = A*, Ox ~ = Ox ~ 

OX ~ OX i , OXi2 OXl2 (4.2) 

It is fairly obvious that the functions ~b* and A* exist: I have previously 
given a proof in the case where ~b = ~b* = 0 (Bonnor, 1969). 

Now, ~b* and A* will not satisfy (3.2) throughout D; where they do not, 
it follows from (2.1 6)-(2.1 8) that T~k r 0, so that spinning null fluid is present 
in D (justification in Section 5). In this way we can construct globally regular 
solutions representing the f ie ld  o f  spinning null f luid within Z. 

In the foregoing we generated the global solution by starting with the 
empty space solutions ~b and A. An alternative procedure, closely analogous 
to that of classical potential theory, is to prescribe w and T 33 within 27 
(proportional respectively to the angular momentum density and the energy 
density), and to solve the Poisson equations (2.12) and (2.18) for w and 
A. If  the functions w and T 33 are sufficiently smooth, the regularity con- 
ditions on ~, fl and A will be satisfied. 

If  ~b and A are required to vanish at x, y = o~ the solutions of (2.12) and 
(2.1 8) for ~b and A are unique, which leads to uniqueness in the g*k. I shall 
actually relax the conditions imposed at x,  y = co in order to allow solutions 
corresponding to null fluid with positive mass and monopole spin (i.e. in 
which the integrated angular momentum is non-zero). As will appear in 
Section 6, these solutions require ~b, A ~ log(x 2 + y2), so that one may add 
to both an arbitrary function of u. This destroys the uniqueness of ~b and A, 
but has no physical importance: because in the case of ~b only ~b I and ~b2 
occur in the gtk, and in the case of A the additive function of u can be 
removed by a coordinate transformation of the type x = x ,  y = y ,  
v = v* + X(u), u = u. 
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An example of a global solution is given in Section 6, 
Finally, let us return to our discovery in Section 3 that the vacuum 

solution can be thrown into the form (3.5) by means of a coordinate 
transformation. This means that the exterior solution is always equivalent, 
at least locally, to a plane-fronted gravitational wave; moreover, it is known 
(Bonnor, 1969) that such waves can, if their sources are in the finite part 
of the x, y plane, be generated by null fluid without spin. The question 
therefore arises whether the global solutions of this section are isometric 
to global solutions for null fluid without spin. 

This question may be answered negatively by considering the invariant 
A discovered by Peres (1960). 

Rik Rr,, = ARf~cR~,,, (4.3) 

For space-times (2.1) which are empty but not flat, A vanishes. If  Tik ~ 0, 
A exists if ~ =/3 = 0, but does not exist if w is a function of x and/or y. 
Hence there is a genuine difference between the interior solutions in the 
spinning and non-spinning cases, even though their exterior solutions are 
locally isometric. However, as already remarked, expression of the vacuum 
metric (2.1) in the form (3,5) may lead to topological difficulties. This is 
referred to again in Section 6. 

5. Physical  Interpretation 

The energy tensor Tik for the non-empty part of space-time is given by 
(2.16)-(2.18). Tik has zero trace, and four zero eigenvalues. It has two 
linearly independent eigenvectors, one null and parallel to s i given by (2.3), 
and one space-like, e.g. 

X i=(W DW2,0,0) 

It satisfies the equation 
Tk' T ~  T,n " -~ 0 (5.1) 

In the classification of Plebaski (1964) it is [4N](3). 
If  wi = wz = 0 the energy tensor reduces to that of a beam of null fluid, 

and may be written 
T~k = psi sk 

& being obtained from (2.3) and p being the energy density (Bonnor, t969). 
In this case, and in this case only, T~k satisfies 

Tff Ti m = 0 (5.2) 

I shall therefore suppose that w represents some property superposed on 
a straight beam of null fluid. 

Let us make the transformation 

V ( 2 )  u = t - z, V ( 2 )  v = t + z (5 .3)  
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which takes (2.1) into 

ds 2 = - d x  z - dy  2 - dz  2 + d t  z + A ( d t  - dz)  2 + 1/2(c,  d x  + f l d y ) ( d t  - dz)  

(5.4) 
When the metric is used in this form I shall write 

2 j =- x ,  2 2 - y ,  "2 3 =- z, 2 4 =- t (5.5) 

I f  ~,/3 and A are small we can consider (5.4) as a perturbation of Minkowski 
space-time. Using (5.3) to transform the T ~k in (2.16)-(2.18) we find 

~33 = T44 = --T34 = --T43 = 16~(  v2A + ~ -W2) (5,6) 

-T13 = 71 ~ = y ~  w2 

V2 (5.7) 
T23 = -T24  = ~ w~ 

Let us suppose for the moment that A and w are small, and interpret 
--Zl 4 and --T24 as components of momentum density in the linear approxi- 
mation theory. Integrating r14 over the cross-section of Z [see (4.1)] by 
the two-surface z = const., t = const., we have 

V2 dx ~dy=0 ffz l,d dy= f f 
because w vanishes on the boundary of Z', from (3.2). Similarly over this 
cross-section 

Hence there is no total momentum in a two-surface z = const., t = const. 
Next consider 

h(u) def f f (Y~I4-- xT24)dxdy -~-- ~/_____2 16 ffwdxdy (5.8) 

h is the angular momentum about the z-axis per unit length of z-axis. I t  

f o l l o w s  t h a t - t / ( 2 )  w/16z ,  is the corresponding  dens i t y  o f  angu lar  m o m e n t u m .  
The above results refer to the linear approximation to our solutions. I 

shall take them as justification for interpreting the exact solutions as repre- 
senting the interior and exterior fields of a stream of spinning null fluid 
moving in the z-direction. The stream is steady if w and A are independent 
ofu.  

In the case of  the non-spinning null fluid, the energy density is given 
by (Bonnor, 1969a) 

__~33 = __~34 = ~43 = ~44 d___.ef P (5.9) 
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the bar referring to the coordinates of (5.5). Adopting the same definition 
of p in this case, we find 

=3~{2V2A 0['0~bV2~b] ' a[a~brv2 P +~x[~x  • ~yL~y v r (5.10) 

Integrating over a cross-section of Z' ,we obtain the mass per unit length 

M(u)=f f oclxdy=Fg # V2Adxdy (5.11) 
io 

Two points of interest arise from the above. First, the angular momentum 
does not contribute to the total energy of the null fluid, although it enters 
the energy density as in (5.10). Secondly, consider a slice of null fluid inside 
Z' between the two hypersurfaces u = k~, u = k2 (kl, k2 constants). Since 
M is a function of u only, the mass of this slice is independent of the time. 
Because of (5.8) a similar result applies to the angular momentum. Thus 
the spinning null fluid does not radiate away mass or angular momentum. 
It is moving too fast: these quantities cannot escape from it. 

The question arises whether the Ti~ in (2.16)-(2.18) refers to a neutrino 
field. If so this T~k should satisfy the Rainich equations for the neutrino field. 
A set of such equations has been given by Penney (1965), and my T~k does 
not satisfy these. However, it seems that Penney's equations are somewhat 
restrictive. Indeed, Mr. J. B. Griffiths and Dr. R. A. Newing have kindly 
informed me that the T~k in (2.16)-(2.18), together with the metric (2.1), 
can represent a neutrino field for certain choices of A and w. (See also 
Griffiths and Newing (1970)). 

6. Exact Solution for Spinnh~g Null Fluid 

Consider the space-time given by (2.1) with 
def r = +(x 2 + y2)1/2 > a (const.) 

r = -4V(2 ) X(U)log r/a 

4~/(2) XY 
: /,2 ' 5 - -  

f" < a  

4~/(2) XX ) 
r 2 (6.1) 

2V2 [~[,.~3 ~b : ~ - T X [ , + ~ a ]  - 9(;)2 + 5] 

c~- a ~  

A 4mr2 
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For r > a we see that 

w = V z ~b = 0 and V z A = 0 (6.3) 

so that the vacuum equations are satisfied in view of (3.1). Provided m and 
X are suitable functions of u, the g~k in (2.1) are now of class C 3 piecewise 
C 1, so we have a global solution of Einstein's equations. There is much 
arbitrariness about the interior solution (r < a): I have chosen it so that 
w and A are about the simplest possible algebraic functions of r. 

For  r < a we find 

24a/(2) X [ r ) 
w = ~- ~a - 1_, h = X, M = m (6.4) 

(5.8) and (5.11) having been used. I therefore interpret the solution as 
referring to a stream of spinning null fluid, X and m being the angular 
momentum and the mass, both per unit length. X and m are arbitrary 
functions of u subject to differentiability. The energy density, given by 
(5.10), turns out to be 

m 6X-~Z (8r 2 - 15ar + 6a 2) (6.5) 
p = ~aa2 -k zra6 

The second term on the right-hand side has a minimum value of-99X2/167ra 4 
at r = 15a/16, hence if p is to be non-negative we need 

m >~ 99XZ/16a 2 (6.6) 

By taking for re(u) and X(U) suitably smooth pulse functions we obtain 
a model for a particle of spinning null fluid, called a spinning nullicon. For 
example, we can take 

{0, , u , > ~ b }  (6.7) 
m = k X : (b  2 _ u2)4 ' In[ < b • 0 

where k is a constant chosen so that negative energies are avoided. The 
particle travels with the speed of light along the z axis of the coordinates 
of (5.5) carrying angular momentum and mass, both of which are constants 
of the motion. (In fact, of course, the profiles of the angular momentum 
density and energy density given by (6.7)propagate without change of 
shape.) The nullicon is accompanied by paine-fronted gravitational waves, 
as is shown below. 

We turn now to the surprising feature of the exterior solution, mentioned 
in Section 3, namely, that ~ and/3 in (6.1) can be removed by a coordinate 
transformation, and the exterior metric reduced to the ordinary plane- 
fronted wave metric (3.5) The required transformation is 

v = v* - 4~/(2) X(u) tan-l ( y)  (6.8) 
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which takes (2.1) into 

d s 2 = - d x  2 -  dy2 + 2dv * du + 2 ( A -  4a/(2)X' tan-I Y)du2 (6.9) 

where the prime means d/du. Let us assume that the sections u = const. 
v = const, have euclidean topology; then if X' v a 0, either g44 is multivalued, 
or it is not continuous for all x, y. I therefore prefer to retain the metric 
in form (2.1) with ~ and/3 non-zero, and to rule that (6.8) is an inadmissible 
transformation. 

The exceptional case, X = const., refers to a steady straight flow of 
spinning null fluid (a steady beam of light with spin). In this case the angular 
momentum X has no effect at all on the exterior metric. It seems remarkable 
that the spin in the source generates no Coriolis' forces in the surrounding 
empty space. 

Something must be said about the conditions at r = oo of (6.1). To fix 
ideas let us take for X(U) and m(u) the function (6.7), so that we may think 
of the source as a moving particle. Then for ]u[ ~> b the whole of (6.1) and 
(6.2) vanish and the space-time is flat. But for lul < b the fields are stronger 
than they would be for static spinning particle, which would have e,/3 ~ R -2  

and A ~ R -1, R = (x 2 + y2 _1_ z2)1/2. This is expected, since in electro- 
magnetism and general relativity the wave field is stronger at great distance 
than the Coulomb field. Nevertheless, the appearance of the logarithm in 
A is somewhat unsatisfactory, because it means that, unless m ' =  0, the 
Christoffel symbol 2'34 tends to infinity with r, which affects the equations 
of geodesics. On the other hand, one can set up natural (freely falling) 
coordinates round every point so that the space-time can be covered by 
non-singular coordinate neighbourhoods, albeit by an infinite number of 
them. The physical components of the Riemann tensor all tend to zero as 
r ---> oo. 

7. Superposition of Solutions 

Owing to the linearity of (2.11) and (3.2), vacuum solutions of metric 
(2.1) can be superposed. It is then easy to write down global solutions for 
several non-overlapping streams of spinning null fluid, each like (6.1)-(6.2). 
Thus, parallel beams of  spinning null fluid do not interact, and in this 
respect resemble non-spinning null fluid. 

8. Conclusion 

The metric (2.1) is a generalisation of the space-time of a stream of null 
fluid, the latter being obtained if ~ =/3 = 0. [ have argued that the generalisa- 
tion refers to spinning null fluid (SNF); my justification is the identification 
of the integral (5.8) with angular momentum. The integral refers of course 
to the interior field. 
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The spin is microscopic and does not refer to the rotation of null world- 
lines. To see this consider s ~, given by (2.3), which is tangent to a congruence 
of null geodesics for both interior and exterior solutions. For the interior 
solution one may consider particles of null fluid as moving along the 
congruence. However, since 

s~; k = 0 

the optical scalars (Kundt, 1961), including the rotation, all vanish. One 
has to think of the spin as a separate field superposed on the velocity field. 

The interior solution for SNF is different from the interior solution for 
non-spinning null fluid (NSNF), because the invariant h in (4.3) exists for 
the latter, but not for the former. (Also (5.2) is satisfied for the latter but 
not for the former.) However, an exterior metric for SNF is locally isometric 
to an exterior metric for NSNF. Nevertheless, except for the case of a steady 
beam of SNF, an exterior metric for SNF cannot be transformed globally 
into a regular NSNF metric with euclidean topology. This question is rather 
mysterious and needs further study. 
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